Destrezas académicas y velocidad de procesamiento. Modelos predictivos del rendimiento escolar en básica primaria

  • Juan Pablo Sánchez-Escudero Universidad Católica de Oriente
  • Carolina Medina-Gómez Universidad Católica de Oriente
  • Yuliana Gómez-Toro Universidad Católica de Oriente

Resumen

El modelo de inteligencia de Cattell-Horn-Carroll (CHC) propone que los procesos cognitivos que componen la inteligencia pueden conceptualizarse como habilidades específicas, implicadas en tareas particulares, y habilidades generales, relacionadas con una amplia cantidad de contextos. Entre las habilidades más estudiadas bajo este modelo se encuentra la velocidad de procesamiento, identificada como uno de los mejores predictores del rendimiento académico y de la capacidad cognitiva general. En este artículo se presentan los resultados del análisis de la relación entre la velocidad de procesamiento y rendimiento académico general. Se evaluó una muestra de 223 estudiantes (53% mujeres) de Preescolar y básica primaria. Los resultados muestran una diferencia en la capacidad predictiva del componente perceptual (β =.76, p < .001) y conceptual (β =.09; p = .121) de la velocidad de procesamiento en procesos académicos básicos de lectura y matemática, así como ajustes similares en modelos de regresión a partir de su conceptualización como habilidad general (R2 = .68) o específica (R2 = .69). El análisis de la relación grado a grado mostró cambios en la capacidad predictiva de la velocidad de procesamiento sobre las habilidades académicas conforme avanza el proceso educativo, apoyando modelos previamente establecidos en el área (Cai, Li & Deng, 2013; Demetriou, Spanodius & Shayer, 2014). Finalmente, es generó un modelo de ecuaciones estructurales (X2=1.431; p=.232; CFI=1.000; TLI=.999; NFI=.999; RFI=.996; RMSEA=.044) que permitió probar el ajuste de los modelos propuestos a los datos.

Citas

Cai D., Li Q. W., & Deng C. P. (2013). Cognitive processing characteristics of 6th to 8th grade Chinese students with mathematics learning disability: Relationships among working memory, PASS processes, and processing speed. Learning and Individual Differences, 27, 120–127. Recuperado de: https://www.sciencedirect.com/science/article/pii/S104160801300109X

Carroll, J.B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, England: Cambridge University Press.

Clark C.A.C., Mize J.N., Garza J., Sheffield T. D., Wiebe S. A., & Andrews K. (2014) Gaining control: changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 1 – 15. doi: 10.3389/fpsyg.2014.00107. Recuperado de: https://www.frontiersin.org/articles/10.3389/fpsyg.2014.00107/full

Cormier, D. C., Bulut, O., McGrew, K.S., & Frison, J. (2016). The roles of Cattell-Horn-Carroll (CHC) cognitive abilities in predicting writing achievement during the school age-years. Psychology in the Schools, 53(8), 787-803. doi: 10.1002/pits.21945. Recuperado de: http://www.iapsych.com/articles/cormier2016b.pdf

Cormier, D. C., Bulut, O., McGrew, K.S., & Singh, D. (2017). Exploring the relations between Cattell-Horn-Carroll (CHC) Cognitive Abilities and Mathematics Achievement. Applied Cognitive Psychology, 31(5), 530-538. doi: 10.1002/acp.3350. Recuperado de: http://www.iapsych.com/articles/cormier2017a.pdf

Cormier, D.C., McGrew, K.S., Bulut, O., & Funamoto, A. (2016). Revisiting the Relations Between the WJ-IV Measures of CattellHorn-Carroll (CHC) Cognitive Abilities and Reading Achievement During the School-Age Years. Journal of Psychoeducational Assessment, 35(8), 731-754. doi: 10.1177/0734282916659208. Recuperado de: http://www.iapsych.com/articles/cormier2017b.pdf

Coyle, T. R. (2013). Effects of processing speed on intelligence may be

underestimated: Comment on Demetriou et al. (2013). Intelligence, 41(5), 732-734. Recuperado de: https://pdfs.semanticscholar.org/7565/1e8e5fb79b0a74436521364d45c7101ce6fa.pdf

Demetriou, A., Spanoudis, G., & Shayer, M. (2014). Inference, Reconceptualization, Insight, and Efficiency Along Intellectual Growth: A General Theory. Enfance, 3(3), 365-396. Doi: 10.4074/S0013754514003097. Recuperado de: https://www.cairn.info/revue-enfance2-2014-3-page-365.htm

Dodonova, Y.A., & Dodonov, Y.S. (2012). Processing speed and intelligence as predictors of school achievement: Mediation or unique contribution?. Intelligence, 40, 163-171. doi: 10.1016/j.intell.2012.01.003.

Evans, J.J., Floyd, R.G., McGrew, K.S., & Leforgee, M.H. (2001). The relations between measures of Cattell-Horn-Carroll (CHC) cognitive abililities and Reading achievement during childhood and adolescence. School Psychology Review, 31(2), 246-262. Recuperado de: http://www.iapsych.com/wj3ewok/LinkedDocuments/Evans2002.pdf

Floyd, R.G., Keith, T.Z., Taub, G.E., & McGrew, K.S. (2007). Cattell-Horn-Carroll Cognitive abilities and their effects on Reading decoding skills: g has indirect effects, more specific abilities have direct effects. School Psychology Quarterly, 22 (2), 200-233. doi: 10.1037/1045-3830.22.2.200. Recuperado de: https://pdfs.semanticscholar.org/64c1/69049137db8386728eff5dd53032637d31f4.pdf

Floyd, R.G., Evans, J.J., & McGrew, K.S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive abilities and mathematics achievement across the school-age years. Psycholoy in the Schools, 40(2), 155-171. doi: 10.1002/pits.10083. Recuperado de: http://www.iapsych.com/articles/Floyd2003.pdf

Floyd, R.G., McGrew, K.S., & Evans, J.J. (2008). The relative contributions of the Cattell-Horn-Carroll cognitive abilities in explaining writing achievement during childhood and adolescence. Psycholoy in the Schools, 45(2), 132-144. doi: 10.1002/pits.20284. Recuperado de: http://www.iapsych.com/wj3ewok/LinkedDocuments/floyd2008.pdf

Floyd, R.G., McGrew, K.S., Barry, A., Rafael, F., & Rogers, J. (2009). General and Specific Effects on Cattel-Horn-Carroll Broad Ability Composites: Analysis of the Woodcock-Johnson III Normative Update Cattell-Horn-Carroll Factor Clusters Across Development. School Psychology Review, 38 (2), 249-265.

Kail, R. (1991). Development of processing speed in childhood and adolescence. Advances in Child Development and Behavior, 23, 151-185. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0065240708600257

Kail R. V., Lervag A., & Hulme C. (2015). Longitudinal evidence linking processing speed to the development of reasoning. Developmental Science, 19(6), 1067-1074. doi: 10.1111/desc.12352. Recuperado de: https://onlinelibrary.wiley.com/doi/pdf/10.1111/desc.12352

Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta psychologica, 86(2-3), 199-225. Recuperado de: https://www.sciencedirect.com/science/article/pii/0001691894900035?via%3Dihub

Kaufman, S.B., Reynolds, M.R., Liu, X., Kaufman, A.S., & McGrew, K.S. (2012). Are cognitive g and academic achievement g one and the same g? An exploration on the Woodcock–Johnson and Kaufman tests. Intelligence, 40, 123-138. doi:10.1016/j.intell.2012.01.009. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0160289612000104

Mather, N., & Woodcock, R.W. (2005a) Woodcock-Johnson III: Pruebas de aprovechamiento. Manual del examinador. Washington, DC: Riverside Publishing Company.

Mather, N., & Woodcock, R.W. (2005b) Woodcock-Johnson III: Pruebas de habilidades cognitivas. Manual del examinador. Washington, DC: Riverside Publishing Company.

McGrew, K.S., & Wendlling, B.J. (2010). Cattell-Horn-Carroll cognitive achievement relations: what we have learned from the past 20 years of research. Psychology in the Schools, 47 (7), 651-675. doi: 10.1002/pits.20497. Recuperado de: https://onlinelibrary.wiley.com/doi/abs/10.1002/pits.20497

Newton, J.H., & McGrew, K.S. (2010). Introduction to the special issue: current research in Cattell-Horn-Carroll-based assessment. Psychology in the Schools, 47(7), 621-634. doi: 10.1002/pits.20495. Recuperado de: https://onlinelibrary.wiley.com/doi/abs/10.1002/pits.20495

Salthouse T. A. (2001). Structural models of the relations between age and measures of cognitive functioning. Intelligence, 29(2), 93 – 115. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0160289600000404

Schrank, F.A. (2005) Woodcock Johnson III Tests of Cognitive Abilities. En D.P. Flanagan & P.L. Harrison (Eds.), Contemporary Intellectual Assesment: Theories, Tests and Issues (pp. 3-22). New York: Guilford Press.

Smedt B., Verschaffel L., & Ghesquière P. (2009). The predictive value of numerical magnitude comparison or individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469–479. doi:10.1016/j.jecp.2009.01.010. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0022096509000265

Taub, G.E., Floyd, R.G., Keith, T.Z., & McGrew, K.S. (2008). Effects of general and broad cognitive abilities on mathematics achievement. School Psychology Quarterly, 23(2), 187-198. doi: 10.1037/1045-3830.23.2.187. Recuperado de: http://psycnet.apa.org/buy/2008-07564-003

Vanderwood, M.L., McGrew, K.S., Flanagan, D.P., & Keith, T.Z. (2002). The contribution of general and specific cognitive abilities to reading achievement. Learning and Individual Differences, 13, 159-188. Recuperado de: https://www.sciencedirect.com/science/article/pii/S1041608002000778

Wasserman, J.D. (2005). A History of Intelligence Assesment. En D.P. Flanagan & P.L. Harrison (Eds.), Contemporary Intellectual Assesment: Theories, Tests and Issues (pp. 371-401). New York: Guilford Press.

Publicado
2019-01-19
Sección
Artículos de investigación